scib_metrics.utils.silhouette_samples#
- scib_metrics.utils.silhouette_samples(X, labels, chunk_size=256, metric='euclidean', between_cluster_distances='nearest')[source]#
Compute the Silhouette Coefficient for each observation.
Implements
sklearn.metrics.silhouette_samples()
.Default parameters (‘euclidean’, ‘nearest’) match scIB implementation.
Additional options enable BRAS compatible usage (see
bras()
documentation).- Parameters:
X (
ndarray
) – Array of shape (n_cells, n_features) representing a feature array.labels (
ndarray
) – Array of shape (n_cells,) representing label values for each observation.chunk_size (
int
(default:256
)) – Number of samples to process at a time for distance computation.metric (
Literal
['euclidean'
,'cosine'
] (default:'euclidean'
)) – The distance metric to use. The distance function can be ‘euclidean’ (default) or ‘cosine’.between_cluster_distances (
Literal
['nearest'
,'mean_other'
,'furthest'
] (default:'nearest'
)) – Method for computing inter-cluster distances. - ‘nearest’: Standard silhouette (distance to nearest cluster) - ‘mean_other’: BRAS-specific (mean distance to all other clusters) - ‘furthest’: BRAS-specific (distance to furthest cluster)
- Return type:
- Returns:
silhouette scores array of shape (n_cells,)