scib_metrics.pcr_comparison#
- scib_metrics.pcr_comparison(X_pre, X_post, covariate, scale=True, **kwargs)[source]#
Principal component regression (PCR) comparison [Büttner et al., 2018].
Compare the explained variance before and after integration.
- Parameters:
X_pre (
ndarray
|Array
) – Pre-integration array of shape (n_cells, n_features).X_post (
ndarray
|Array
) – Post-integration array of shape (n_celss, n_features).covariate_pre – Array of shape (n_cells,) or (n_cells, 1) representing batch/covariate values.
scale (
bool
(default:True
)) – Whether to scale the score between 0 and 1. If True, larger values correspond to larger differences in variance contributions betweenX_pre
andX_post
.kwargs – Keyword arguments passed into
principal_component_regression()
.
- Return type:
- Returns:
pcr_compared: float Principal component regression score comparing the explained variance before and after integration.